BAOD: Budget-Aware Object Detection


We study the problem of object detection from a novel perspective in which annotation budget constraints are taken into consideration, appropriately coined Budget Aware Object Detection (BAOD). When provided with a fixed budget, we propose a strategy for building a diverse and informative dataset that can be used to optimally train a robust detector. We investigate both optimization and learning-based methods to sample which images to annotate and what type of annotation (strongly or weakly supervised) to annotate them with. We adopt a hybrid supervised learning framework to train the object detector from both these types of annotation. We conduct a comprehensive empirical study showing that a handcrafted optimization method outperforms other selection techniques including random sampling, uncertainty sampling and active learning. By combining an optimal image/annotation selection scheme with hybrid supervised learning to solve the BAOD problem, we show that one can achieve the performance of a strongly supervised detector on PASCAL-VOC 2007 while saving 12.8% of its original annotation budget. Furthermore, when 100% of the budget is used, it surpasses this performance by 2.0 mAP percentage points.

Best Paper Award at LatinX in AI Workshop at Computer Vision and Pattern Recognition 2021
Alejandro Pardo
Alejandro Pardo
PhD Student in Computer Vision

My research interest is with video processing and analysis, and its applications.